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A model for the large strain deformation of polyethylene under uni-axial tension is
described. Based on observations made by other researchers, the model describes
hardening at large strains by considering dislocation nucleation and reorientation of slip
planes within the crystalline phase. The temperature and strain-rate sensitivity of this
behaviour are predicted with reasonable accuracy in a pipe-grade high-density
polyethylene. The model has only three adjustable parameters which are the crystal shear
modulus, the Young’s modulus and a critical dislocation length. C© 2000 Kluwer Academic
Publishers

1. Introduction
The plastic deformation of polyethylene to large strains
under uni-axial tension and shear appears to control the
brittle-tough transition temperature observed in rapid
crack propagation of polyethylene [1]. The large strain
behaviour of polymers when subjected to uni-axial ten-
sion is complicated by necking and cold-drawing [2]
and is sensitive to strain-rate and temperature [2]. It
is only relatively recently that experimental techniques
have been devised to overcome these problems in or-
der to obtain true stress-strain curves at constant true
strain-rates [2, 3]. This paper examines the true stress,
true strain curves, obtained at constant temperature and
true strain-rate, of a pipe-grade high-density polyethy-
lene copolymer reported by Hillmansenet al. [4]. The
characteristic shape of these curves is an initial linear
region followed by yield at a true strain of approxi-
mately 0.1 (Figs 1 and 2). After yield a pronounced
hardening is observed.

The primary aim of this work is the development of a
constitutive elastic-viscoplastic relationship, which can
be incorporated into a numerical structural analysis.
The model must allow constitutive relations calibrated
from low strain-rate experiments to be extrapolated to
higher strain rates, where isothermal conditions can-
not be maintained due to the high rate of heat genera-
tion from the plastic deformation. A reliable system of
extrapolation requires consideration of the microstruc-
tural mechanisms involved. The model should there-
fore also provide a framework for examining the effects
of processing conditions by providing a link between
microstructural parameters, such as lamellar thickness,
and mechanical behaviour.

A material model developed by Haward and
Thackray [5] attributes the hardening to a decrease in
entropy associated with chain reorientation. They used
rubber elasticity theory to predict the change in en-
tropy as a function of stretch (λ). The model was orig-

inally developed for glassy polymers, and a form of
it has been adopted by Boyceet al. [6]. Rubber elas-
ticity models, whether developed using a Gaussian or
Langevin formulation for chain extension [7], show a
stiffening behaviour qualitatively similar to that seen in
Figs 1 and 2 in which the stress increases as approxi-
matelyλ2. G’Sell and Jonas [8] and Haward [9] have
shown that the Gaussian formulation fits such data rea-
sonably well. However, the use of rubber elasticity to
model polyethylene deformation below the melt tem-
perature is questionable. As early as 1951 Crawford
and Kolsky [10] used birefringence results from drawn
polyethylene to show that the molecular reorientation
during extension does not even qualitatively follow rub-
ber elasticity theory (Fig. 3).

In addition, rubber elasticity theory does not directly
explain the rate or temperature dependence seen in
Figs 1 and 2. The stiffness of an ideal rubber actually
increases with temperature and is insensitive to strain-
rate. Although entropic rubber elasticity undoubtedly
has a role to play in the deformation of the amor-
phous phase it is not yet included in this model. In fact,
the model is formulated using only the bare minimum
of physical processes ascribed to polyethylene in the
literature.

The basic concepts behind the model can be sum-
marised as follows:

• The shear stress acting on crystallographic planes
can be resolved at a microstructural level using
continuum mechanics.
• The reorientation of the crystallographic planes

can be described by the pseudo-affine model of
Crawford and Kolsky [10]. The statistical approach
to describe distribution of orientations will al-
low realistic solution times when the model is
incorporated into a numerical structural analysis
code.
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Figure 1 True stress-true strain curves as a function of strain-rate
(in. s−1) for a 62% crystalline polyethylene at 46◦C [4]. Continuous
line: experiment, points: predicted.

Figure 2 True stress-true strain curves as a function of temperature for
a PE100 at a true strain-rate of 10−3/s [4]. Continuous line: experiment,
points: predicted.

Figure 3 Comparison of predicted and experimental birefringence (1n)
as a function of strain [10]. (1n increases with chain alignment to the
draw direction).

• Yield and post-yield deformation are governed by a
thermally activated dislocation nucleation process.
• The combined effect of the all slip planes within

the material can be calculated by summing them
as if they acted in parallel.

For uni-axial tension the resolved shear stress is cal-
culated, by continuum mechanics, to be at a maximum
on planes inclined at±45◦ to the draw direction. The
shear stress then falls to zero on planes aligned parallel
or perpendicular to the draw direction. As the mate-
rial is stretched, reorientation causes the slip planes to
become aligned to the draw direction. An increasing
true stress in the direction of loading is then required
to maintain the same resolved shear stress and rate of
slip. The following sections quantify this behaviour to
explain the characteristic hardening of the true stress-
strain relationship for polyethylene and its temperature
and strain-rate dependence.

A similar form of model has been proposed by Ahzi
et al. [11] (see also G’Sell and Dahoun [12]). They
have concentrated on predicting the evolution of crys-
talline texture with strain rather than the dependence
of experimental stress-stretch curves on temperature
and strain-rate. The model presented here differs by di-
rectly implementing a pseudo-affine deformation law
to predict reorientation and using an alternative model
for crystalline slip that is directly dependent on mi-
crostructural parameters. Ahziet al. used an adapted
Taylor model [13] to predict reorientation allowing the
dependence on all possible slip systems to be accounted
for. In comparison, the pseudo-affine deformation law,
as used here, accounts only for the dominant chain slip
system. However, the Taylor model does itself make
the assumption of affine deformation, with each crys-
tal subjected to the same strain and strain-rate as the
polycrystal aggregate.

The next section concentrates on the re-orientation
behaviour. The following sections then examine previ-
ous research to form a foundation for further assump-
tions made in the model. An Eyring activation pro-
cess is then used to model slip within the crystalline
phase of the material. The equations derived for the
re-orientation and slip mechanisms are finally com-
bined to predict true stress-strain curves which are com-
pared with experiment.

2. Re-orientation due to drawing
As polyethylene is extended the average chain direction
becomes aligned to the direction of elongation (z axis).
As mentioned above, Crawford and Kolsky showed
that the change in birefringence due to this orienta-
tion could be predicted using a ‘pseudo-affine’ model.
Their model assumed that chains rotate under the global
strain in an affine manner: the change in orientation of
any chain segments parallel to a line drawn within the
material (AB in Fig. 4) would follow that of the drawn
line.

Since orientation is a three dimensional property they
considered the minimum volume cylinder which lay
parallel to thezaxis and fully enclosed the line. Consid-
ering the extension of this cylinder at constant volume
they calculated:

tan(θ ) = λ−3
2 tan(θ0)

whereθ is the angle of inclination of a chain segment
to the draw direction at a stretch ofλ. The angleθ0
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Figure 4 Rotation of a chain segment.

is the initial inclination of the chain segment in the
undeformed state (λ= 1). The model is termed pseudo-
affine, as opposed to affine, because the change in length
of AB is ignored. The number of chain segments (β)
per radian inclination is then found to be:

β = β0
λ

3
2

1+ (λ3− 1) sin2(θ )
(1)

whereβ0 is the distribution in the undeformed state.
Assuming a purely random initial distribution [14]

gives:

β0 = M

2
sin(θ0) (2)

WhereM is the total number of chain segments. The
above equations were then used to predict the birefrin-
gence as a function of stretch and compared against
experimental results (Fig. 3). Crawford and Kolsky
considered that the quantitative birefringence error be-
tween their pseudo-affine model and experiment might
have been due to ignoring the amorphous region. This
would indeed affect their analysis of how the light is
refracted and their final results, but would not neces-
sarily invalidate Equations 1 and 2. Later, Maxwell
et al. [15] found good quantitative agreement between
the pseudo-affine model and results from wide angle
X-ray scattering (although they did find a small varia-
tion with crystallinity) and Bartczaket al. [16] showed
that re-orientation of the amorphous and crystalline
phases occurred almost in parallel, the amorphous
phase leading by only a few degrees. These results im-
ply that, although the refraction analysis of Crawford
and Kolsky was in error, Equations 1 and 2 are valid.

The overall picture is therefore that reorientation of
the amorphous and crystalline regions are intimately
linked and can be quantitatively modelled by Equa-
tions 1 and 2.

3. Intimacy of the amorphous
and crystalline phases

The ability of continuum mechanics to accurately re-
solve shear stresses on crystallographic planes depends
on the amorphous and crystalline phases being inti-
mately connected. ‘Tie chains’ and inter-crystalline
links have been proposed as structures which trans-
mit stress between lamellae [17]. The remaining amor-

phous material is then seen as having little influence on
mechanical properties. Tie chains and inter-crystalline
links would produce stress concentrations within the
lamellae at their points of attachment, making it diffi-
cult to resolve shear stresses accurately. Since the slip
process proposed in the present model depends on an
intimate connection between the phases, this topic is
now discussed.

Vadimsky et al. [18] used electron microscopy to
demonstrate that inextensible crystalline links can ex-
ist in the bulk material. However, they also showed
that stress can be transmitted on a much finer scale by
chains which do not immediately re-enter the lamellae
adjacent to the point from which they left it, as they
do in regular chain folding. These chains enter the en-
tangled amorphous region and can either re-enter the
same lamella at a remote point, enter another lamella
or terminate. This idea is supported by Flory and Yoon
[19] who, on the basis of a crystal growth rates and neu-
tron scattering experiments, argued that entanglements
existing in the melt cannot be undone during crys-
tallisation but become concentrated in the amorphous
phase. The process restricts ordered, adjacent re-entry
chain folding, making random re-entry far more prob-
able. Adjacent re-entry is further limited in branched
polyethylenes since the branches are segregated into the
amorphous phase [20, 21]. The argument against signif-
icant adjacent re-entry chain folding has been supported
more recently by Sch¨onherret al. [22], who examined
specimens deformed under plane strain compression by
using atomic force microscopy and small angle X-ray
scattering.

The picture is therefore one in which molecular
chains weave through an entangled amorphous phase,
enter lamellae and then pass back into the amorphous
phase without showing significant adjacent re-entry.
This process is repeated for the complete length of each
molecular chain such that each one is included in many
lamellae.

For polyethylene to possess the strength and stiff-
ness which it has, the amorphous regions must trans-
mit stress between lamellae without showing exces-
sively high strains [22]. Rubber elasticity theory, which
is applicable to the amorphous region above its glass
transition temperature (≈−70◦C), would suggest high
strains. However, the essentially lamellar structure of
the crystalline phase suppresses volume contraction of
the interlamellar amorphous layers bonded to it, in-
creasing their stiffness to the bulk modulus [23], about
1 GPa. Under these conditions inter-lamellar shear is
more likely to dominate the deformation [16, 24].

4. Crystallographic slip
This section describes a mechanism by which the dom-
inant chain slip system is controlled by dislocation nu-
cleation. The dynamics of the slip process are then
quantified using the thermal activation process pro-
posed by Krausz and Eyring [25] and commonly used to
describe the yield point of polymers [26]. Finally, the
relationship between microstructural slip and macro-
scopic strain is examined with reference to lamellar
orientation.
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4.1. Dislocation nucleation
It has been established that the dominant plastic defor-
mation mechanism of the crystalline phase is fine chain
slip since molecular chains become orientated towards
the tensile direction. Transverse slip is also possible and
Martensitic transformations can occur, but on a negligi-
ble scale [27–29]. The dominance of these mechanisms
is due to the high carbon-carbon bond stiffness with re-
spect to that of the Van der Waals bonds.

Chain slip is the slip of one chain over another in the
chain direction [001], the slip plane being of the{h,k,0}
type. Due to the trans conformation of the chain the
Burgers vector,b, is equal to twice the spacing of car-
bon atoms along the molecular chain (0.254 nm). Only
screw dislocations will be considered here since they
offer much lower resistance than edge dislocations [30]
and their glide is not limited to a specific plane, as with
edge dislocations. Screw dislocations along the chain
direction have the lowest line energy on the (100) and
(010) planes with evidence that slip on the (100) plane
is easiest [31]. In order to achieve a model that can re-
alistically be incorporated in a numerical analysis code
no distinction is made between the plastic resistances
along{h,k,0} planes. The simplification is supported by
the work of Gleiter and Argon [32].

Dislocation theories developed for metals consider
homogenous nucleation to be unrealistic and the dislo-
cation density to be maintained by regenerative multi-
plication of Frank-Read type sources. The lamellae of
HDPE are in the order of 20 nm thick [33] and in such
thin crystals Frank-Read sources become less viable.
Peterson [34] proposed that screw dislocations could be
nucleated from the free lateral surfaces of a lamella. Re-
cently Lin and Argon [35] supported the mechanism as
possibly playing a governing role. A form of Peterson’s
analysis is adopted in this model and developed below.

Consider an infinitely thick lamella with a screw dis-
location which has nucleated at the edge and moved a
distancel into the lamella (Fig. 5). The elastic energy
of the dislocation per unit length,E(l ), is then given
by [36]:

E(l ) = µb2

4π
ln

(
2l

r0

)
(3)

wherer0 is the core radius andµ is the crystalline shear
modulus, C44. In reality the value ofE(l ) will actually

Figure 5 Portion of a lamellar enclosing a screw dislocation at a distance
l from the free surface.

show a limiting value of approximately 1/2µb2 but
this does not affect the analysis since we are only con-
cerned with small values ofl (see below). The analy-
sis suggested by Peterson was aimed at determining a
lower bound limit to examine whether dislocation nu-
cleation was a viable system in semi-crystalline poly-
mers. Peterson used a derivation by Eshelby and Stroh
[37] to account for the finite thickness of lamellae which
is developed from assuming that the lamellar surface
planes (001) are stress free. However, the stress free
assumption is incorrect if there is an intimate link with
the amorphous phase at the (001) surface plane. Fur-
thermore, ifd, lÀ r0 then Peterson’s lower limit esti-
mation reduces to the same form given in Equation 3
with the factor of 2 in the log term reducing to unity.
In this modell is treated as a calibration parameter
and therefore Equation 3 may be used, providing the
derived values ofµ are not taken as being indicative
of the theoretical crystal shear modulus. (Young [33]
fitted Peterson’s model to experimental results by ad-
justingr0).

The increase in free enthalpy associated with creation
of a dislocation from a free edge is therefore:

1G(l ) = µb2d

4π
ln

(
2l

r0

)
− τθ dlb (4)

whered is the lamellar thickness andτθ is the maxi-
mum resolved shear stress acting in the [001] direction.
Differentiating with respect tol gives the maximum in
free enthalpy,1Gmax, at:

lc = 1

4π

µ

τθ
b, which gives

1Gmax= µb2d

4π

[
ln

(
2lc
r0

)
− 1

]
(5)

To nucleate a screw dislocation in the absence of any
thermal energy giveslc= 1.4b, assuming thatr0= b.
Young [33] found the average shear modulus of HDPE
to be 1 GPa at a strain-rate of order 10−3 and the shear
stress on preferentially oriented lamellae to be 20 MPa
at yield, givinglc= 4b. Due tolc approaching the as-
sumed size ofr0 the accuracy of Equation 4 is somewhat
dubious but the predicted dependence of1Gmax on d,
b andµ should still hold true.

If Equation 4 were to be believed it would imply that
the strain-rate was directly proportional toτθ , rather
than exp(τθ ) as experiment shows it to be. Given this
fact and thatlc is of the same order of size asr0,
Equation 4 is used, with a value oflc which is assumed
to be stress independent:

1Gmax(l ) = µb2d

4π
ln(2l ∗)− τθ db2l ∗ (6)

wherel ∗ = lc
r0

and a value ofb is taken forr0.
Using a drag coefficient analysis [38] gives the veloc-

ity, v, of a dislocation once nucleated as approximately:

v = Ä(τθ − τp)

kT
vs,
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Figure 6 Slip of partial chains across a slip plane. The unfilled circles
represent CH2 units which change phase.

whereÄ is the atomic volume,k is the Boltzmann con-
stant,vs=

√
µ/ρc is the shear wave speed in the crystal

of densityρc andτp is the Peierls stress which will be
negligible relative toτθ . Using Young’s data quoted
above then givesv≈ 30 m/s for HDPE at room tem-
perature. Therefore once the dislocation has travelled
a distancelc from the free surface, it can then easily
move across the lamella to produce a unit slip ofb.

At large strains the model predicts that the total
slipped distance across a given slip plane can be an
appreciable fraction of the lamellar thickness. The slip
process examined above would seem to suggest that
crystallinity and the effective lamellar thickness would
decrease at the large strains due to the separation of
Van der Waals bonds occurring at the lamellar surface.
This is not borne out by experimental observations
which show crystallinity remains relatively unaltered
[39]. It is proposed here that, although the actual car-
bon atoms involved in the crystalline and amorphous
phases across a slip plane change during a relative dis-
placement ofb, the microstructure of the crystalline
phase remains the same size in terms of effective lamel-
lar thickness,d, and total crystallinity (Fig. 6).

Wu et al. [40] used small angle neutron scattering to
examine the deformation of blends of protonated and
deuterated polyethylene. They demonstrated that the
deuterated polyethylene fraction was partially segre-
gated in the undeformed state but became more evenly
distributed after plastic deformation. They used their re-
sults as validation for a partial melting-recrystallisation
process. The process proposed here accommodates
these results since parts of molecular chains can move
from the amorphous to crystalline phase and vice versa.

4.2. Rate constant of the slip process
Krausz and Eyring [25] describe the absolute rate the-
ory for thermally activated reactions passing over a free
enthalpy barrier1G. The forward reaction is defined to
be in the direction of the applied stress and the reaction
rate as the number of transformations per unit volume
over the energy barrier. The reaction passes over a po-
tential barrier and acomplexwhich has obtained enough
energy to pass over this barrier is said to be in the ac-
tivated state. The termcomplex, as used here, denotes
the group of partial molecular chains within a lamellae
that may, given sufficient thermal energy, form a stable

screw dislocation as described by Equation 6. Using
Boltzmann statistics to evaluate the rate,kf , at which
a given complex passes over an energy barrier in the
forward direction gives:

kf = v̄f

1
exp

(
−1Gmax

kT

)
(7)

The average forward velocity of the activated com-
plexes moving within the distance1 between stable
states is ¯vf . Eyring treats1 as being a function of tem-
perature. In this case the distance can be identified as the
Burger’s vector,b. The mean velocity of the activated
complexes along the metastable degree of vibrational
freedom is given by Kausz and Eyring as:

v̄f =
(

kT

2πme

) 1
2

wherek is the Boltzmann constant,T is the absolute
temperature andme, the effective mass of the activated
complex, is given by Kockset al.[38] as approximately:

me = db2ρc

calculated from the kinetic energy component of a
dislocation moving at a constant velocity and assum-
ing the dislocation energy is 1/2µb2. Substituting into
Equation 7 gives:

kf = 1

b2

(
kT

2πdρc

) 1
2

exp

(
−1Gmax

kT

)
It is normal to assume the forward barrier is small com-
pared to backward and that the backward rate can be ig-
nored. For the model described here there are situations
where this assumption cannot be made sinceτθ can fall
to zero due to orientation effects. The approximation
is made that the energy barrier in the back direction is
given by:

1Gmax(l
∗) = µdb2

4π
ln(2l ∗)+ τθ db2l ∗

The above equation is only quantitatively true when
τθ→ 0 but this is the only point at which the term is
significant.

The nett forward reaction rate is therefore:

ks= kf − kb= 2

b2

(
kT

2πdρc

) 1
2

exp

(
− µdb2

4πkT
ln(2l ∗)

)
× sinh

(
db2l ∗τθ

kT

)
(8)

Hydrostatic pressure dependence is significant in
polyethylene [41]. The dependence is due to the hy-
drostatic pressure straining the Van der Waals bonds
and reducing the shear modulus. For the case consid-
ered here it is the normal stress,σn, which controls this
straining. Assuming a linear dependency gives:

µ = µ0− ασn
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Whereµ0 is the shear modulus whenσn= 0 andα is
the hydrostatic dependency factor. The value of both
µ0 andα must be determined from experimental re-
sults but, since the data collected so far does not allow
an accurate determination ofα, the hydrostatic pres-
sure dependency is not incorporated into Equation 8 at
present.

Hinton and Rider [41] demonstrated the validity of
using continuum mechanics to resolve shear stresses
acting on slip planes at a microstructural level in
polyethylene. More recently Bartczaket al. [28] per-
formed more comprehensive experiments which con-
firmed these results.

For a Poisson’s ratio of 0.5, continuum mechanics
gives the shear stress (τθ ), in uni-axial tension, on an
inclined plane as:

τθ = 1
2σzzsin(2θ )

whereθ is the angle between this plane and thez axis
andσzz is the normal stress on planes normal to the axis
of extension (z). Substituting into Equation 8 gives:

ks = 2

b2

(
kT

2πdρc

) 1
2

exp

(
− µ0v0

4πkT

ln(2l ∗)
l ∗

)
× sinh

(
v0σzzsin(2θ )

2kT

)
(9)

where the activation volume,v0= db2l ∗.

4.3. Slip strain
To complete the model, the relationship between
macroscopic strain and the rate constant given by
Equation 9 must be determined. The first step is to de-
cide how lamellae of different orientations interact so
that the strain can be partitioned between them. Before
describing the interaction law a ‘composite unit’ is de-
fined as the crystalline material surrounding a single
slip plane together with the neighbouring amorphous
material associated with it.

To remain true to the pseudo-affine model the com-
posite units are forced to act in parallel to form an ag-
gregate. The total normal stress on the aggregate is then
the sum of the individual normal stresses on each com-
posite unit in the aggregate. In extreme cases of slip
unit orientation (0◦,±90◦ and 180◦) the resolved shear
stress will be zero. Without including any alternative de-
formation to slip, these cases would lead to an infinitely
high normal stress under an imposed finite strain. This is
physically unrealistic, the strain being accommodated
by bond or chain stretching or the initiation of higher
energy slip systems. The composite unit is therefore
modelled as an elastic and viscous element in series,
as in the Maxwell model. The viscous element is asso-
ciated with the slip plane only. The elastic element is
associated with the material of the slip and amorphous
components and is simply described by a Young’s mod-
ulus, E (Fig. 7). The approach of modelling the slip
units acting in parallel to form an aggregate is analogous
to Ward’s aggregate model using Voigt averaging [42].

Figure 7 Array of composite units arranged in parallel to form an
aggregate.

His aggregate model also incorporated pseudo-affine
deformation to describe reorientation of the molecular
chains. The primary purpose of Ward’s model was to
describe the anisotropic development of modulus due
to drawing, which has been neglected here. Instead, the
present model concentrates on the slip process to show
how it can explain the hardening behaviour observed
in experiments. However, due to the similarity with
Ward’s model, it would be relatively straightforward
to include the stiffening characteristics he proposed.

The simplest approach to quantify the slip strain is to
examine a representative slip plane as shown in Fig. 8.
Small angle and wide angle X-ray scattering results
[29, 31] show that the normals to a lamellar surface
rotate away from the chain direction as a result of
fine chain slip. The spacing between slip planes,a0,
is therefore taken as the average{h,k,0} plane spacing
(0.493 nm). The representative axial length of the plane
is then:

l i = a0

sin(θi )

The rate of change of length due to slip is given by:

l̇ i = bks cos(θi )

Figure 8 Slip strain due to a slip unit.
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The true strain-rate due to slip is therefore:

ε̇s
i =

l̇ i
l i
= b

2a0
ks sin(2θi ) (10)

The true strain-rate due to elastic extension is given by:

ε̇e
i =

σ̇i

E
(11)

whereE is the Young’s modulus.
The sum of the slip and elastic components of exten-

sion rate is equal to the strain rate on the aggregate:

ε̇m = ε̇e
i + ε̇s

i (12)

Substituting for the individual strain rates from
Equation 10 and gives a differential equation inσi

which can be numerically integrated over time to give
the stress-stretch response of each composite unit. The
total true stress on the aggregate can then be calculated
by summing the contributions from each unit.

4.4. Crystallinity
Up until this point total crystallinity has not been ac-
counted for. Young [43] proposed that the shear stress
is supported only by the crystalline fraction but this
has not been incorporated into the model since a main
assumption is that the amorphous phase can support a
significant stress. From the viewpoint of the model pro-
posed here, the main effect is the reduction in Young’s
modulus of the composite unit with decreasing crys-
tallinity. Kennedyet al. [44] demonstrated thatE is in
fact better characterised by the thickness of the inter
lamellar amorphous phase but this thickness is itself
dependent on crystallinity.

5. Model predictions and characteristics
This section compares the predictions of the model to
true stress strain data, measured at constant true strain-
rate measured by Hillmansenet al. [4] for the bimodal
high-density polyethylene described above. The only
unknown parameters in the model areµ, E andl ∗. The
modulus,E, was set to give the correct initial slope
of the stress strain curve. Its value was altered with test
temperature butnottest rate. The values used are shown
in Fig. 9.

The approximate dependency of true stress on true
strain-rate for any given orientation is shown more
clearly if the derived value ofks from Equation 9 is
substituted into Equation 12 andkb, ε̇e are assumed to
be negligible:

σi

(
sin(2θi )+ α ln(2l ∗)

2π l ∗
sin2(θi )

)
= ln(2l ∗)

2π l ∗
µ0+ 2kT

v0
ln
(
ε̇s

i

)− 2kT

v0
ln
(
ε̇0

i

)
(13)

where

ε̇0 = sin(2θi )

2bao

(
kT

2πdρc

) 1
2

Figure 9 Values of composite modulus,E, used in the model for each
temperature.

The activation volume,v0= db2l ∗ = 5.6 nm3, was set
to give the measured strain-rate sensitivity. The approx-
imate lamellar thickness,d, in HDPE is 20 nm which
gives a value ofl ∗ as 4.34.

The predicted temperature sensitivity is dependent
on both the strain-rate constant (˙ε0) and the crystal
shear modulus (µ0). The theoretical value of the crystal
shear modulus is 3.4 GPa at 24◦C falling by only 0.25
GPa to 3.15 GPa at 85◦C. Due to the uncertainty in
the quantitative accuracy of the free energy calculation
(Equation 3),µ0 is treated here as a calibration constant
independent of temperature in order to maintain clarity.
In this mannerµ0 was found to be 0.7 GPa. The effec-
tive mass calculation used in evaluating the strain-rate
constant is only approximate but gives satisfactory re-
sults, as can be seen from the temperature dependence
shown in Fig. 2. The model does not predict the correct
hardening at high temperatures and strains. This could
be due to two reasons:

• Firstly, the hydrostatic pressure sensitivity,α, de-
fined in section 4.2 has been neglected due to in-
sufficient data. In reality, at high strains, the energy
required to nucleate an edge dislocation would be
higher due to the crystal shear modulus increasing
as the normal stress decreases.
• Secondly, the elastic modulus of the composite

units becomes higher at high strains due to align-
ment of the molecular chains. To demonstrate this
effect in a crude way the prediction of the model
at 24◦C and 85◦C is shown in Fig. 10 with ex-
actly the same parameter values as above but for
an increase in elastic modulus by a factor of 10
(2.1 GPa and 5.5 GPa at 24◦C and 85◦C respec-
tively). As can be seen a much better agreement
with experiment occurs at high strains, the effect
being more pronounced at high temperatures due
to the ease of slip.

5835



Figure 10 Experimental and predicted true stress strain results as shown
in Fig. 2 but for an increase in composite modulus,E, by a factor
of 10.

6. Discussion
The model presented here captures most of the main
characteristics of the true stress-strain characteristic of
an HDPE. The model indicates how these characteris-
tics depend on microstructural parameters. The parallel
combination of elements has a similarity to creep mod-
els. As such the model should be of use in examining
stress-relaxation data since the pseudo-affine model is
also valid for this case [10].

The model has been kept to a bare minimum of com-
plexity. The main areas which are seen as providing the
most significant improvements are given below:

• Ward’s model for the development of anisotropy of
the modulus can be included to produce a sharper
upturn in the stress-strain curve at high strains. A
further improvement might be obtained by using
rubber elasticity theory to model the amorphous
phase.
• As the temperature is increased above 70◦C the

crystalline units start to melt at an increasing rate,
increasing the partial chain lengths in the amor-
phous regions and reducing the modulus. The ef-
fect can be largely modelled by calibrating the de-
pendence ofµ andE on temperature. However, the
average lamellar thickness, which must increase
due to the lower stability of small thickness lamel-
lae, might also have to be accounted for.

It is often the case that molecular characteristics such
as molecular weight and branch content are investigated
with regard to their effect on mechanical properties such
as yield stress. The model presented above provides
a convenient stepping stone between these two types
properties via a material’s microstructural properties.
For example, Kennedyet al. [44] demonstrated that
although the yield stress initially increases with lamel-
lar thickness it becomes less sensitive at high lamellar
thicknesses. The model predictions agree with this re-
sult. Kennedyet al. also used Young’s proposal that
only the crystalline phase supports the yield stress to
show that the critical resolved shear stress on the lamel-
lae is not dependent on lamellar thickness. However,
from the viewpoint of the model presented here, which

Figure 11 Lamellar thickness as a function of core crystallinity from
the data of Kennedyet al. [44].

does not support Young’s proposal, the critical resolved
shear stress is dependent on lamellar thickness. There-
fore one arrives at the conclusion that lamellar thickness
must be proportional to crytallinity. Fig. 11 was gener-
ated from the data of Kennedyet al.to demonstrate the
validity of this conclusion.

The zero spin condition for uni-axial tension in sim-
ulations based on the Taylor model is automatically
satisfied in this model due to axial symmetry of the
slip lines. For the cases where the distribution is not
isotropic, or the deformation is not restrained by the
zero spin condition the results of Hinton and Rider on
pre-oriented specimens indicate that the model can still
provide satisfactory predictions.

The model shows that, although a molecular chain’s
entropy must be reducing as it orientates towards the
draw direction, entropic forces are not necessarily the
dominant cause of the hardening observed. This is sub-
stantiated by tests performed in shear, which show that
there is little or no hardening [45]. The shear result can
be explained by reorientation causing the slip planes
to become aligned with the plane of maximum shear
stress.
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